ABMORMAL OPTICAL ROTATORY DISPERSION OF STEROIDAL TETRAHYDROFURANONES

 Sh8 Itf, Katsuya Endo, Toshio Ogino, Hiroyuki Takeuchi and Taiichiro Watanabe Department of Chemistry, Tohoku UniversitySendai, Japan

(Received 28 April 1967)

In the course of the structural study of widdrol I, a sesquiterpene alcohol from various conifers, we have prepared the keto-ether II having a unique tetrahydrofuran-3one part-structure. Although the structures I and $I I$ were eventually established (1,2), the negative cotton effect $\left([\Phi]_{289}^{\text {peak }}+3200\right.$, $\left.[\Phi]_{332}^{\text {trough }}-4400\right)(3,4)$ in the ORD curve of II seemed to deserve further investigation with respect to the applicability of current concepts of ORD to five-membered ring ketones (5). In the meantime, Johns on and his coworkers (6) have synthesized a steroidal compound III, with a very similar but mirrorimage part-atructure (Cf. II), from A-homocholest-4a-en-3-one and asaigned the structure IIIa to it. The fact that the ORD curve of III also exhibited a negative Cotton effect

1

II

IIIa

III
(〔 $\Phi]_{285}^{\text {peak }}+4100$, ($\left.\Phi\right]_{333}^{\text {trough }}-2900$) (7), prompted us to reinvestigate the stereochemistry of III by synthesizing pairs of diastereoisomers of similar structures. We now wish to present the result of our study which shows that the stereochemistry of compound III is in fact represented by the formula $I I I$ and that the cotton effect of the tetrahydrofuran-3-ones can not be interpreted in terms of a 'first order' effect in the cyclopentanone ring aystem (5).

A-Homocholest-4a-en-3B-ol IV, I.p. 103-103. 5° (8), and the corresponding $3 a-01 \mathrm{~V}$, m.p. $145-146^{\circ}$, were obtained by lithium aluminumhydride reduction of A-homocholest-4a-en-3-one VI (6) and chromatographic separation of the benzoates of the products (benzoate of IV, amorphous, benzoate of V, m.p. 134-135 $)$ and subsequent lithium aluminumbydride
Partial formula Compds No.

VI

VII

XV

XXIII

XXIX

$X X X$

FIG. I
reduction to remove the benzoate grouping (9).
Perbenzoic acid oxidation of ∇ fielded the corresponding 3α-hydroxy-4a $\alpha, 5 \alpha$-oxide VII, m.p. 149-154.5 ${ }^{\circ}$ (65% yield), and $4 a \beta$-hydroxy- $3 \alpha, 5 \alpha$-oxide VIII, m.p. $168-170^{\circ}$ (15% yield), which gave amorphous acetate IX. Chromic acid oxidation of VIII gave 4a-keto$3 \alpha, 5 \alpha$-oxide X, m.p. $83-84^{\circ}, \nu 1748 \mathrm{~cm}^{-1}, \delta_{4 \alpha^{2}} 2.61, \delta_{4 \beta} 2.19, \delta_{3} 4.63$ (ABX), $J_{4 \alpha, 4 \beta} 18$, $J_{3,4 \alpha}{ }^{7}, J_{3,4 \beta^{1}}(10)$. On sodium borohydride reduction, X reverted back to VIII quantitatively. Chromic acid oxidation of VII, followed by alumina chromatography, afforded
 methanolic hydrochloric acid, yielded the corresponding methyl ether XII, m.p. 132.5$134^{\circ}$, and, on hydrogenation (Pd-C), gave 3β-hydroxy- $3 \alpha, 5 \alpha$-oxide XIII, m.p. 123-125 . With acid in methanol, XIII gave the corresponding methyl ether XIV, w.p. 102.5-103.5 .

Perbenzoic acid oxidation of IV proceeded similarly and gave the products with the inverted partial stereochemistry; the 3β-hydroxy- $4 a \beta, 5 \beta$-oxide XV, amorphous (33% yield), and $4 a \alpha$-hyd roxy $-3 \beta, 5 \beta$-oxide XVI, m.p. 165.5° (35% yield). When the same reaction sequences as in the cases of VII and VIII were applied to XV and XVI, respectively, they arforded 3α-hydroxy-4-en- $3 \beta, 5 \beta$-oxide XVII, m.p. $176-176.5^{\circ}, \delta_{4} 6.36, \delta_{49} 5.89$ ($\mathrm{J}_{4,4 a} 6 \mathrm{cps}$), 3α-methoxy-4-en- $3 \beta, 5 \beta$-oxide XVIII, m.p. $95.5-97^{\circ}$, 3α-hydroxy- 3β, 5β-oxide XIX, m.p. 177-178 ${ }^{\circ}$, and 3α-methoxy-3, 5β-oxide $X X$, m.p. $83-83.5^{\circ}$, and $4 a-$ keto- 3β, 5β-oxide $X X I$, ㅍ.p. $129-131.5^{\circ}, \nu 1741 \mathrm{~cm}^{-1}, \delta_{4 \beta^{2}} 2.65, \delta_{4 \alpha^{2}} .24, \delta_{3} 4.55, J_{4 \alpha, 4 B^{17.5}, J_{3,4 B} 7, J_{3,4 \alpha^{1}} .}$ XXI reverted back to XVI on sodium borohydride reduction.

In order to obtain the 4 a-keto-3, 5-oxides with the oxygen functions at 3-and 4aposition, osmium tetroxide oxidation of the epimeric alcohols IV and V was carried out. The products obtained from V were the epimeric glycols; $3 \alpha, 4 a \beta, 5 \beta-t r i o l ~ X X I I, ~ m . p . ~ 186-~$ 187°, and $3 \alpha, 48 \alpha, 5 \alpha-t r i o l$ XXIII, m.p. $183-184^{\circ}$ (83% and 13% yield, respectively). Chromic acid oxidation of the former afforded the 3α-hydroxy-4a-keto- $3 \beta, 5 \beta$-oxide XXIV, m.p. $179-180^{\circ}, \nu 1749 \mathrm{~cm}^{-1}$, which on methylation furnished 3α-methoxy-4a-keto- 3β, 5β-oxide III obtained earlier by Johnson (6). Acid treatment of XXII gave the $4 a \beta$-hydroxy- 3β, $5 \beta-$ oxide XXV, m.p. 169-169.5 , chromic acid oxidation of which afforded XXI. Chromic acid oxidation of the triol XXIII gave 3β-hydroxy-4a-keto- $3 \alpha, 5 \alpha-o x i d e ~ X X V I, ~ m . p . ~ 201.5-202.5{ }^{\circ}$, $\nu 1747 \mathrm{~cm}^{-1}$, methylation of which afforded 3β-methoxy-4a-keto-3, $5 \alpha-$ oxide XXVII, m.p. 126$127^{\circ}, \nu 1749 \mathrm{~cm}^{-1}$, and sodium borohydride reduction of XXVII, in turn, afforded the corresponding 3β-methoxy-4a β-hydroxy- $3 \alpha, 5 \alpha$-oxide XXVIII, m.p. 200-2020. The products
obtained by the osmium tetroxide oxidation of IV were the corresponding epimeric $1,2-$ glycols; $3 \beta, 4 \mathrm{a} \beta, 5 \beta$-triol XXIX, m.p. $196-197^{\circ}$ (55% yield), and $3 \beta, 4 a \alpha, 5 \alpha-t r i o l$ XXX, m.p. $238-239^{\circ}$ (13\% yield). Chromic acid oxidation of triols XXIX and XXX afforded XXIV and XXVI, respectively.

The keto-oxide III, which was originally obtained from A-homocholest-4a-en-3-one VI through $4 a \beta$-hydroxy- 3α-methoxy- $3 \beta, 5 \beta$-oxide XXXI (6), acetate XXXII, m.p. $109-110^{\circ}$, was reduced with sodium borohydride to give the epimeric alcohol, 4 ad-hydroxy- $3 \alpha-m e t h o x y-$ $3 \beta, 5 \beta$-oxide $X X X I I I$, m.p. $174 \cdot 5-176^{\circ}$, which gave amorphous acetate XXXIV. The hydroxyoxide $x \wedge X I$ was also converted to XVIII via its xanthate, thus interrelating the products of perbenzoic acid oxidation and osmium tetroxide oxidation.

Many of these compounds form stereoisomeric pairs with regard to the configuration of the oxide bridge and/or hydroxyl group at the 4 -position as shown in Fig. I. The configuration of the oxide bridge in the two series of compounds was established from the chemical shifts of 19 -methyl signal (listed in Fig. I): In the 3β, 5β-oxide series, the methyl signals always appear at $1.05-1.11 \mathrm{ppm}$ irrespective of the nature of the substituents in the five-inembered ring, whereas in the $30,5 a-o x i d e$ series, the chemical shifts of the methyl signals are very dependent on the nature of the substituents present in the five-membered ring (11). These assignments are also in accord with modern concepts of the stereospecificity of the reaction sequences used (12).

FIG. II. ORD curves of a) 4a-keto-A-homocholestan-3a,5a-oxide X and $4 a-k e t o-A-h o m o-$ cholestan- 3β, 5β-oxide XXI and b) 3α-methoxy-4a-keto-A-homocholestan- $3 \beta, 5 \beta$-oxide III and 3β-methoxy-4a-keto-A-homocholestan-3a,5a-oxide XXVII.

Holecular models of the two pairs of 3-oxacyclopentanones with diastereoisomeric part-structure, X and $X X I$, and XXVII and III, clearly shov that their oxacyolopentanone rings are fixed in a twisted conformation, and on grounds of previous findings (5) this would reault in the appearance of cotton effects of opposite aign, i.e., positive for X and XXVII and negative for XXI and III. However, all the ORD curver of these 3-oxacyclopentanones exhibited unexpectedly negative Cotton effects as shown in Fig. II, indicating that, in the case of twisted oxacyclopentanones, the sign of the cotton effect is not solely governed by the ring chiralities. Although the reas on for thia abnormality is not as yet clear, the present result might serve as a warning against using the sign of cotton effect to deduce the absolute configuration of an oxacyclopentanone.

The anthors are deeply indebted to Dr. Y. Inoue, Tohoku University, and to Dr. K. Kuriyama, Shionogi Research Laboratory, for ORD measurenents and to Drs. W. Nagata and M. Narisada, Shionogi Research Laboratory, for their handsome gift of some bridged steroidal cyclopentanones.

REFERENCES AND POOTRONES

1) C. Enzell, Acta Chem. Scand. . 16, 1553 (1962).
2) S. It8, K. Endo and T. Nozoe, Chem. Pharm. Bull. Jepan, 11 , 132 (1963). Idem., Tetrahedron Letters, 3375 (1964).
3) Enzell reported the values as $[\Phi]_{292}^{\text {peak }}+3200$, $[\Phi]_{323}^{\text {trough }}-4000$ (1).
4) All ORD curves described in this paper were measured in methanol.
5) W. Klyne, Tetrahedron, 123, 29 (1961).
6) W.S. Johnson, M. Neeman, S.P. Birkeland and N.A. Fedoruk, J. Am. Chem. Soc., 84, 989 (1962).
7) We thank Professor W.S. Johnson, Stanford University, for informing us in a personal communication that the ORD curve of this compound shows a negative cotton effect (a -70).
8) Correct analytical figures were obtained for all compounds described.
9) Structures IV and V were assigned to these epimeric alcohols on the basis of the stereochemical requirements of the reactions described. The assignment is supported by the "benzoate sector rule" developed by Professor Nakanishi, Tohoku University, and his coworkers. Cf. N. Harada, K. Nakanishi and M. Ohashi, Abstracts of the papers at the 20th Annual Meeting of the Chemical Society of Japan, Vol. III, p. 636 (1967).
10) NMR spectra were measured in CDCl_{3}. Chemical shifts (δ) are expressed in ppm from internal TMS and coupling constants (J) in c / s.
11) Proximity effect of ethylenic linkage, carbonyl group, hydroxyl and acetoxyl groups is well known. Cf. N.S. Bhacea and D.H. Williams, Application of NMR Spectroscopy in Organic Chemistry, Holden-Day, San Francisco (1964).
12) Cf. E.L. Eliel, Stereochemistry of Carbon Compounde, McGraw-Hill, New York (1962).
